Физика для любознательных. Том 1. Материя. Движени - Страница 102


К оглавлению

102

Этот метод используют на практике в баллистике. (Деревянный брусок не укрепляют на тележке, а обычно подвешивают в виде маятника. При этом изменяется геометрия опыта, но принцип, лежащий в его основе, остается прежним.) Метод основав на предположении о сохранении количества движения; скорость пули можно измерить и другими способами; получаемые при этом результаты совпадают с нашими. На фиг. 202 показан принципиально иной метод измерения, который может служить проверкой результата, полученного предыдущим методом. Пуля пролетает через два бумажных диска, укрепленных на оси, вращающейся с известной скоростью, и оставляет в дисках отверстие Y. При неподвижной оси с помощью выстрела проделываются «стандартные отверстия» X. Угловое смещение отверстий (А — В) служит мерой времени пролета пули.



Фиг. 202. Другой метод измерения скорости ружейной пули.


Третий закон Ньютона

Если мы уверены, что количество движения Mv сохраняется (никогда не теряется и не создается вновь, а происходит лишь обмен количеством движения между телами), то можно сделать вывод, что два тела, которые сталкиваются или взаимодействуют между собой, должны действовать друг на друга с равными и противоположно направленными силами. Это третий закон движения Ньютона:

ДЕЙСТВИЕ РАВНО ПРОТИВОДЕЙСТВИЮ

Вот доказательство этого утверждения.

Предположим, что два тела, А и В (фиг. 203), сталкиваются друг с другом (или обмениваются количеством движения каким-нибудь иным способом). Обозначим изменение количества движения тела А через Δ(Mv), а изменение количества движения тела В — через Δ(Mv). Тогда, если количество движения сохраняется, Δ(Mv) и Δ(Mv) должны быть равны и противоположно направлены

Δ(Mv) = — Δ(Mv)

(То же можно записать и по другому: полное изменение количества движения, Δ(Mv) + Δ(Mv), должно быть равно нулю.)

Но для тела А изменение количества движения равно

Δ(Mv) = (Сила, действующая на A)∙Δt,

а для тела В изменение количества движения равно

Δ(Mv) = (Сила, действующая на В)∙Δt



Физ. 203. Силы, действующие во время столкновения.


Время Δt одно и то же для обоих тел, поскольку столкновение тела А с телом В не может длиться больше, чем столкновение тела В с телом Аt — это просто продолжительность столкновения обоих тел).

Следовательно, если количество движения сохраняется, то

(Сила, действующая на A)∙Δt = —(Сила, действующая на В)∙Δt,

или

(Сила, действующая на A) = —(Сила, действующая на В)∙Δt.

Таким образом, (сила, действующая на А) и (сила, действующая на В) равны и противоположны друг другу,

ДЕЙСТВИЕ РАВНО ПРОТИВОДЕЙСТВИЮ.

Существует мнение, что сохранение количества движения — это экспериментально установленный факт, и поэтому считают, что третий закон Ньютона хорошо проверен на опыте. Другие рассматривают третий закон как аксиому, своего рода предварительную формулировку способа, которым мы собираемся исследовать природу. Они предостерегают нас, заявляя, что сохранение количества движения нельзя доказать экспериментально. Можно лишь получить иллюстрацию этого принципа, поскольку те же или аналогичные эксперименты, которые берутся для вычисления Mv, мы используем для измерения масс.

Независимо от того, рассматриваем ли мы третий закон Ньютона как экспериментальный факт или основную аксиому, мы пользуемся им во всех областях физики, этот закон формирует наше мышление, не приводя к противоречиям. Сам Ньютон не провозглашал торжественное рождение третьего закона и не пытался внедрять его императивно. Он сформулировал его как рабочую гипотезу, которой собирался пользоваться, приняв ее для построения механики; однако он подверг эту гипотезу еще тщательной проверке, проводя опыты по столкновению маятников. (Прочтите описание экспериментов Ньютона, данное им самим, и обратите внимание, как остроумно он справился с сопротивлением воздуха.)

Если вы понимаете смысл третьего закона, а часто его понимают неправильно и даже неправильно излагают в учебниках, то, пожалуй, сможете пользоваться им не хуже самого Ньютона.


Мощный инструмент для решения задач

Теперь вы видите, каким мощным инструментом может служить закон сохранения количества движения при решении задач. Если в системе происходят какие-то явления, то между одной частью системы и другой ее частью могут возникать многочисленные внутренние силы, но они появляются в виде пар равных и противоположно направленных сил (третий закон Ньютона). Поэтому они не могут изменить результирующего количества движения. Мы можем проводить расчеты общего характера, не зная о внутренних деформациях и перемещениях и не заботясь о них. Когда мы делим нашу систему на две части, например при рассмотрении столкновения, и говорим, что количество движения, приобретенное одной частью, должно быть отнято у другой, нам не нужно ничего знать о силах, которыми обусловлен этот обмен количеством движения. Эти силы представляют собой пары равных и противоположно направленных сил действия и противодействия. Они являются источником равных и противоположно направленных количеств движения независимо от того, постоянны эти силы или быстро возрастают и снова убывают по величине, возникают эти силы при внезапном столкновении или в результате слабого гравитационного притяжения, приводит действие этих сил к колебаниям молекул (теплота), закручиванию пружин (потенциальная энергия) или полному восстановлению первоначальной энергии движения. Так, если пуля вылетает с большой скоростью из ружья и попадает в деревянный брусок, лежащий на абсолютно гладком столе, то скорость скольжения бруска (вместе с пулей) можно вычислить, зная массы и первоначальную скорость пули и предполагая, что количество движения сохраняется. Для расчета не нужно знать в деталях, что происходило с пулей. Как правило, пуля пробивает древесные волокна, разрывая их, в результате чего температура волокон повышается, и в конце концов вся энергия движения пули растрачивается, превращаясь в теплоту. Если пуля ударится о кусок металла, находящийся внутри деревянного бруска, то пуля нагреется сама и может расплавиться. Внутрь деревянного бруска можно поместить приспособление, которое захватывало бы пулю так, чтобы при этом энергия ее движения расходовалась на сжатие пружины или вызывала вращение небольшого колеса. В любых случаях конечная скорость бруска будет одной и той же при условии, что пуля застревает в нем.

102