На каждое тело (лошадь), (телега), (лошадь + телега) действует несколько сил. Третий закон Ньютона не говорит о том, являются ли две основные силы, действующие на любой из этих объектов, равными и противоположно направленными. Он требует, чтобы силы взаимодействия для каждой пары тел на фиг. 210 были равны и противоположно направлены.
Фиг. 210. Расположение сил в задаче о лошади и телеге.
Для каждой пары тел мы имеем равные и противоположно направленные силы.
Сила, с которой лошадь тянет телегу, +F и Сила, с которой телега тянет лошадь, — F равны и противоположны.
Другие силы,
действующие в горизонтальной плоскости:
Сила, с которой дорога толкает лошадь, +G и Сила, с которой лошадь толкает дорогу, — G равны и противоположны;
Сумма сил трения, приложенных к телеге, +H и Сумма сил, действующих на дорогу и воздух со стороны телеги, — Н равны и противоположны;
Сила сопротивления воздуха, приложенная к лошади, +J и Сила, действующая на воздух со стороны лошади, — J равны и противоположны;
действующие в вертикальной плоскости:
Сила притяжения лошади Землей, +W и Сила притяжения Земли лошадью, — W равны и противоположны
Такая же пара сил определяет взаимодействие телега — Земля. Но каково соотношение между силами F и G или F и Н, это совсем другой вопрос, который не имеет ничего общего с третьим законом Ньютона. (В то же время, складывая все силы, действующие на одно тело, например силы F и Н, которые действуют на телегу, можно с помощью второго закона Ньютона предсказать ускорение тела.)
«Действие равно противодействию» — почти аксиома
При построении небесной и земной механики Ньютону пришлось иметь дело с притяжением Земли, приложенным к Луне, и с притяжением Луны, действующим на Земле. Если бы мы не могли утверждать, что подобные силы равны и противоположно направлены, то развитие механики сильно осложнилось бы, а то и вовсе стало бы невозможным, даже, пожалуй, лишенным смысла.
Дело в том, что это свойство сил лежит в основе нашего способа рассмотрения сил в механике. Взвешиваясь, вы фактически измеряете силу давления ваших ступней на площадку весов. Но вы стремитесь измерить силу притяжения вашего тела Землей, и если вы находитесь в состоянии равновесия, то сила земного притяжения уравновешивается реакцией площадки весов. Итак, мы хотим измерить силу земного притяжения W (фиг. 211).
Фиг. 211. Опыт со взвешиванием в ускоренно движущемся лифте.
Мы предполагаем (первый закон Ньютона), что в состоянии равновесия W = —F, где F — реакция площадки весов. Далее (третий закон Ньютона), сила F равна и противоположна силе F давления тела на площадку весов, и весы измеряют силу F. Третий закон Ньютона ничего не говорит о соотношении между силой W и любой из сил F и F. Он говорит только о том, что F и F равны и противоположны друг другу, (Разумеется, самой силе W отвечает равная и противоположная сила реакции, направленная вверх, — притяжение, которое испытывает огромная Земля со стороны вашего тела.)
Если вся эта система тел движется ускоренно вверх (как в лифте в начале подъема), то сила F должна быть больше силы W, так что результирующая сила [F—W] будет придавать ускорение вверх и вашему телу в соответствии с соотношением F = M∙a; но сила F по-прежнему будет равна силе F и противоположна ей по направлению. В этом случае весы измерят F (или F), но не W.
Демонстрация действия и противодействия
Если равенство действия и противодействия кажется очевидным проявлением симметрии, вы можете рассматривать его как тривиальный факт, своего рода 2 + 2 = 4, и вывести отсюда закон сохранения количества движения. Но большинство ученых считает такой подход чрезмерно наивным и полагает, что равенство действия и противодействия нельзя доказать, не измеряя количества движения.
ОБОДРЯЮЩИЕ ОПЫТЫ
Можно предложить несколько опытов, которые если и не доказывают равенства действия и противодействия, то во всяком случае иллюстрируют этот принцип. Опыты, изображенные схематически на фиг. 213 и 214, кажутся на первый взгляд удачными, но их можно истолковать как проверку самих пружин, проверку, которая ничего не доказывает, если только мы не примем в качестве допущения то, что стремимся доказать.
Фиг. 213. Попытки продемонстрировать принцип «действие равно противодействию».
Опыт 6. Пожалуй, лучшим из этих опытов следует считать тот, где меньше всего деталей, запутывающих рассмотрение. На фиг. 214 показан опыт с кольцом из пружинной стали, который демонстрирует силы, возникающие при деформации кольца.
Соображения симметрии не позволяют нам приписать деформацию кольца действию усилия, приложенного именно с одного конца, а не с другого, а заставляют поверить в то, что тянущие силы равны и противоположно направлены. Кольцо деформируется в один и тот же симметричный овал независимо от того, действует ли на него стена или люди, покоятся ли они или движутся любым образом. (В лучшем случае эти опыты приносят нам успокоение. В худшем случае — это надувательство, цель которого заставить нас думать.) Мысль о том, что этот опыт может дать какое-то подтверждение третьего закона Ньютона, все же соблазнительна. Представим себе, что кольцо из пружины становится все тоньше и тоньше, пока его масса не окажется практически равной нулю. В таком случае даже при движении с ускорением на кольцо не должна действовать результирующая сила (первый закон Ньютона). Поэтому обе действующие на кольцо силы должны быть равны и противоположно направлены. Означает ли это, что третий закон Ньютона доказан? Отнюдь нет. Это совсем не те силы, равенство которых мы хотим доказать, а силы, приложенные со стороны разных тел к одному и тому же телу! Мы же хотим узнать, равно ли противодействие кольца, приложенное к одному из тел, силе, приложенной к кольцу со стороны этого тела, и направлено ли оно противоположнотянущей силе.