Сопротивление ветра («давление» ветра)
Летящий самолет оставляет позади себя циркулирующий воздух, который стекает с его крыльев и фюзеляжа. Таким образом, в воздухе позади крыла создается довольно большое вихревое движение (со значительной кинетической энергией), и его масса движется вперед. Крыло непрерывно теряет количество движения и, следовательно, испытывает силу, направленную назад, «сопротивление» воздуха; корпус самолета должен тащить крыло вперед, чтобы компенсировать потерю количества движения. В целом при равномерном полете самолет не выигрывает и не теряет количества движения. Его пропеллер отбрасывает назад поток воздуха, сообщая этому воздуху количество движения, направленное назад, в то время как крыло и фюзеляж оставляют струю вихрей с количеством движения, направленным вперед. Таким образом, позади самолета возникает сложное движение воздуха, в котором суммарное количество движения равно нулю.
Фиг. 251. Идеализированная картина ламинарного потока.
В какой мере сопротивление воздуха, действующее на крыло самолета или на любой другой предмет, образующий вихри, зависит от скорости полета? Летящее со скоростью v крыло оставляет за собой слой воздуха, движущийся вслед за крылом. Обозначим через А площадь поперечного сечения этого слоя, «вертикальное лобовое сечение» крыла (фиг. 252).
Фиг. 252. За движущимся крылом остается движущийся вперед воздух.
Пусть действующая на крыло сила сопротивления, обусловленная непрерывной потерей количества движения, равна F. Чтобы рассчитать величину F, допустим для начала, что слой воздуха приобретает полную скорость крыла v.
Тогда, согласно F∙Δt = Δ(mv),
(сила F)∙(время t, сек) = количество движения, потерянное крылом за t сек,
= количество движения, приобретенное за t сек слоем воздуха, приходящим в движение позади крыла.
За t сек крыло продвигается вперед на расстояние vt, оставляя за собой слой движущегося воздуха длиной vt и площадью А, следовательно, объем этого слоя равен A∙v∙t.
Этот воздух имеет:
МАССА = (ПЛОТНОСТЬ)∙(ОБЪЕМ), или (d)∙(A∙v∙t).
Если скорость равна v, то количество движения равно
(МАССА)∙(ПРИОБРЕТАЕМАЯ СКОРОСТЬ), или (d∙A∙v∙t)∙(v), или d∙A∙v∙t.
Следовательно,
F∙t = d∙A∙v∙t,
или
F = d∙A∙v
получаем
СИЛА = (ПЛОТНОСТЬ)∙(ПЛОЩАДЬ)∙(СКОРОСТЬ)
В реальных случаях воздух приобретает не всю скорость v, а некоторую долю ее и площадь А не равна точно сечению крыла, но все же справедливо соотношение
F = (ПОСТОЯННАЯ)∙(НЕКОТОРАЯ ПЛОЩАДЬ)∙(ПЛОТНОСТЬ ВОЗДУХА)∙(v).
Величина постоянной зависит от геометрической формы крыла, а также интервала скоростей. Фактор формы велик для необтекаемых предметов, таких, как плоская тарелка, поставленная поперек потока воздуха, или даже круглый мяч. Для «обтекаемого» тела, подставляющего ветру такую же площадь, но имеющего правильно сконструированную каплеобразную форму, этот фактор в 20—100 раз меньше, потому что такое тело создает значительно более слабое вихревое движение. Рассмотренное сопротивление, обусловленное остающимися позади вихрями, по своей природе совершенно отлично от создаваемого трением сопротивления при ламинарном течении.
Фиг. 253. Сравнительная величина факторов формы, влияющих на сопротивление воздуха в случае быстрого потока.
Механизм сопротивления, создаваемого внутренним трением
Сила сопротивления, обусловленная внутренним трением при ламинарном течении, создается не в результате появления макроскопического движения среды, а вследствие «уноса» мелких порций количества движения, происходящего при столкновении молекул. Ближайшие к движущемуся предмету молекулы жидкости при столкновении с ним приобретают часть его количества движения и при столкновении с соседними молекулами передают им свое приобретение. Такие молекулы, снующие взад и вперед в беспорядочном движении, ведут себя как мыши, «отщипывая» от медленно движущегося предмета небольшие порции количества движения. Вследствие похищения части количества движения предмет испытывает тормозящую силу
F∙t = ПОТЕРЯ КОЛИЧЕСТВА ДВИЖЕНИЯ ЗА ВРЕМЯ t.
Как это сопротивление, обусловленное внутренним трением, зависит от скорости движущегося предмета? Предположим, предмет стал двигаться вдвое быстрее; тогда его количество движения возрастет вдвое. При каждом столкновении молекулы жидкости, вероятно, будут забирать ту же долю от удвоенного количества движения предмета, что и раньше. Поэтому при каждом столкновении они будут уносить вдвое большее количество движения. А частота столкновения остается той же, потому что скорость движения предмета мала по сравнению со скоростями молекул. Таким образом, при удвоенной скорости предмет за то же время теряет удвоенное количество движения. Следовательно, он должен испытывать удвоенное сопротивление, поэтому следует ожидать, что сопротивление будет пропорционально скорости предмета, F ~ v. Опыт подтверждает это для медленного ламинарного течения газа или жидкости.