Второй метод называют дедуктивным. Мы исходим из каких-то общих правил или представлений, а затем путем логических рассуждений выводим из них частные следствия или предсказания.
Ученые проверяют затем подобные предсказания на опыте. Если эксперимент подтверждает предсказания, то мы продолжаем развивать свою схему. Если же результаты эксперимента расходятся с нашими выводами, мы подвергаем сомнению первоначальные предположения и пытаемся видоизменить их. Например, мы могли бы предположить, что затмения Луны вызываются тем, что Земля оказывается на пути солнечных лучей и отбрасывает тень на Луну; далее мы делаем предположение о характере движения Солнца и Луны и затем путем дедукции приходим к выводу, что затмение должно снова произойти через промежуток времени, достаточный для того, чтобы Солнце и Луна вернулись в то же самое положение по отношению к Земле. Этот промежуток времени должен быть «наименьшим общим кратным» одного лунного месяца и одного солнечного года. Так, комбинируя простые наблюдения и разумные предположения, мы могли бы сделать дедуктивный вывод о восемнадцатилетнем цикле повторения затмений. (Для успешного расчета в качестве солнечного года необходимо взять особый, короткий год, связанный с меняющейся орбитой Луны.)
Ланцелот Хегбен указывает: «Читателям детективной литературы известны два типа сыщиков. Одни придерживаются метода Фрэнсиса Бэкона, собирая на картотеку по крупицам всю относящуюся к делу информацию. Другие, подобно Ньютону, следуют какой-то идее и, как Ньютон, тотчас отбрасывают ее, если она приходит в противоречие с наблюдаемыми фактами. Единство науки — в природе результата исследований, в единстве теории и практики. Каждый вид поиска по-своему полезен, и лучший сыщик тот, кто сочетает оба метода, руководствуясь своей идеей для проверки гипотез, причем готов к появлению новых фактов».
Один из ведущих американских физиков П. Бриджмэн следующим образом выразил общую точку зрения: «Я бы сказал, что не существует научного метода как такового, и самая существенная особенность методики научной работы состоит просто в том, что ученый должен действовать во всю силу своего ума, не гнушаясь ничем, за что можно было бы ухватиться».
Изучение ускоренного движения индуктивным и дедуктивным методами
Первоначальное развитие науки было обязано главным образом индуктивному методу познания; в нашем рассмотрении свободного падения тел мы пользовались методом индукции и на основании многих наблюдений установили общее положение, согласно которому все тела, свободно падающие в вакууме, движутся одинаково. Изучая детали этого движения свободного падения, Галилей, по-видимому, использовал одновременно оба метода. Он выдвигал плодотворные гипотезы и умело использовал геометрию и логические рассуждения.
Мы воспользуемся теперь вторым методом, т. е. дедукцией. Начнем с принятия некоторого правдоподобного правила, а затем сопоставим выводы из принятого правила с действительным свободным падением тел.
Выберем приведенное выше предположение 3 (стр. 37), т. е. примем, что скорость свободно падающего тела возрастает равномерно на одну и ту же величину за равные отрезки времени. Можно дать более удобную формулировку этого предположения, сказав, что оно предусматривает движение «с постоянным ускорением», но для этого необходимо придать слову ускорение вполне определенный смысл. Назовем ускорением величину
[ПРИРАЩЕНИЕ СКОРОСТИ]/[ЗАТРАЧЕННОЕ ВРЕМЯ], или ИЗМЕНЕНИЕ СКОРОСТИ В ЕДИНИЦУ ВРЕМЕНИ
Давая это определение ускорению, мы на самом деле выбираем величину (приращение скорости)/(затраченное время), удобную для пользования, а затем как-то называем ее. Мы вовсе не раскрываем истинного смысла, заключенного в слове «ускорение»! Мы делаем выбор и приписываем выбранной величине наименование, потому что она оказывается удобной для описания рассматриваемого явления природы.
Поскольку мы часто будем иметь дело с изменяющимися величинами, нам необходим краткий способ записи величин «изменение…» или «приращение…». Выберем для этого символ Δ — греческую букву дельта. Первоначально этот символ употреблялся вместо буквы d в слове «difference» (разность). Тогда наше определение ускорения будет выглядеть следующим образом:
УСКОРЕНИЕ = [ПРИРАЩЕНИЕ СКОРОСТИ]/[ЗАТРАЧЕННОЕ ВРЕМЯ] = [ИЗМЕНЕНИЕ СКОРОСТИ]/[ИЗМЕНЕНИЕ ПОКАЗАНИЙ ЧАСОВ],
a = Δv/Δt,
где а — ускорение, v — скорость, t — время.
Дедуктивный анализ движения с постоянным ускорением
Теперь выразим наше предположение о свободном падении тел при помощи этой новой терминологии. Предположим, что для тел, совершающих свободное падение (в вакууме),
Δv/Δt постоянно
Эта запись формулирует чрезвычайно смелое предположение о реальной природе. Справедливо ли оно? Постоянна ли величина Δv/Δt. Чтобы непосредственно проверить это, нам пришлось бы воспользоваться специальным прибором, чтобы измерить ускорение тела (Δv/Δt) на каждом этапе его падения. Такие приборы существуют, но они сложны, и нам не удалось бы получить с их помощью необходимого убедительного доказательства справедливости предположений. Поэтому мы последуем примеру Галилея и прибегнем к помощи логической машины — математики, чтобы получить вывод, который затем можно будет проверить на опыте.
Математика говорит: если ускорение a(=Δv/Δt) постоянно и s — расстояние, пройденное за время t с этим постоянным ускорением, то