Скорость движения не постоянна, даже ускорение не остается постоянным. Однако изменение скорости груза происходит одинаково при разных амплитудах, поэтому мы можем высказать предположение, что, будучи неодинаковой на разных стадиях отклонения, скорость груза на соответствующих стадиях движения с удвоенной амплитудой должна быть больше, чем скорость движения с первоначальной амплитудой, иначе Т не оставалось бы неизменным.
Задача 2
Отважившись на обобщение рассуждений, проведенных в задаче 1, мы должны ожидать, что при любых (малых) амплитудах скорости на соответствующих стадиях колебания связаны с амплитудой колебания следующим образом: ___
Задача 3
Вернемся к задаче 1, где сравнивались колебания, амплитуда которых отличаются вдвое. Поскольку удвоение амплитуды равносильно увеличению соответствующих скоростей ___ и поскольку груз приобретает эти скорости за один и тот же промежуток времени, его ускорение Δv/Δt при удвоенной амплитуде должно быть ___ больше, чем при колебании с первоначальной амплитудой. (Опять-таки ускорение не остаётся постоянным, но мы сравниваем ускорения на соответствующих стадиях колебания.)
Задача 4
Обобщая рассуждения в задаче 3, можно сказать, что соотношение между ускорением (на любой выбранной стадии колебания) и амплитудой должно выглядеть следующим образом: ___.
Задача 5
Хотя в конце отклонения груз не движется, он обладает наибольшим (направленным к вертикали) ускорением. Это ускорение обусловлено совместным действием силы тяжести и силы, приложенной к грузу со стороны нити. Эти силы в сумме дают результирующую силу F, направление которой совпадает с направлением движения. Из задачи 4 представляется правдоподобным, что результирующая сила, действующая на груз в конце отклонения, должна быть связана с амплитудой А следующим образом: ___
Фиг. 259. К задаче 5.
Задача 6
Это соотношение между силой и отклонением от положения равновесия должно выполняться на любой стадии колебания. Это выглядит похожим на ___
Задача 7
Исходя из задачи 6, мы можем ожидать, что движение, при котором период Т не зависит от амплитуды, будет наблюдаться для таких тел, как ___, причем для этих тел независимость периода от амплитуды, по всей вероятности, должна быть
_______________________
Простое гармоническое движение
Все изохронные колебания представляют собой движения одного и того же типа с одинаковым по форме графиком зависимости амплитуды от времени — синусоидой. Мы называем такое движение простым гармоническим движением (эпитетом «гармоническое». Это движение обязано тому важному значению, которое оно имеет в музыке). Колебания маятника при малых отклонениях очень близки к простым гармоническим движениям. Груз, подвешенный на пружине, движется вверх и вниз, совершая при этом простые гармонические движения в широких пределах изменения амплитуды. (Проделайте наскоро опыт в лаборатории: он доставит вам большое удовлетворение.) Пружина с подвешенным грузом, гибкий брус, растягиваемая проволока, закручиваемый стержень, любая упругая система, подчиняющаяся закону Гука, совершает колебательное движение, называемое простым гармоническим колебанием.
Фиг. 260. Изохронные колебания и график зависимости смещения от времени.
«Простым гармоническим движением» мы называем повторяющееся движение особого типа — движение маятника и схожее с ним движение груза на пружине, — это не просто любое движение с постоянным периодом. (Кроты, выползающие из-под земли каждое утро в поисках пищи и возвращающиеся каждую ночь обратно под землю, совершают в известном смысле «изохронное» движение — его период составляет 24 часа, как бы ни были глубоки их норы, — но это, разумеется, отнюдь не простое гармоническое движение.) Если проанализировать движение маятника, обратившись к геометрии, то можно установить важную характеристику этого движения.
Движение маятника характеризуется переменным ускорением, которое всегда направлено к среднему положению и изменяется прямо пропорционально расстоянию от этого положения.
Если s — расстояние вдоль траектории, скажем, груза маятника, а а — ускорение, то мы найдем a ~ s, или а = —ks, где k — вещественная постоянная.
Знак минус показывает, что ускорение направлено в сторону, противоположную отклонению. (Когда груз отклонен вправо — мы считаем такие отклонения положительными, когда ускорение направлено влево, мы приписываем ему отрицательное значение.)
Фиг. 261. Разнообразные системы, совершающие простые гармонические движения.
Механика движения маятника
Чтобы показать, что для груза маятника а ~ s (при малых амплитудах), рассмотрим действующие на него силы. Сила натяжения нити направлена по радиусу и не может изменить скорость груза. Кроме этой силы, на груз действует только притяжение Земли, вес груза, направленный вертикально вниз. Разложим этот вектор на компоненты F и F:
F направленная вдоль дуги, придает грузу ускорение,