За пределами видимого света находится область инфракрасного излучения с большей длиной волны, которую можно легко измерить с помощью грубых дифракционных решеток. За инфракрасными лучами спектр продолжают радиоволны — от самых коротких волн так называемого сверхвысокочастотного (СВЧ) диапазона до обычных радиоволн, у которых λ измеряется сотнями метров. По другую сторону области видимого света располагаются ультрафиолетовые лучи с более короткими длинами волн, чем у видимого света (фиг. 286); длину волны ультрафиолетовых лучей измеряют с. помощью тонких дифракционных решеток, которые приходится помещать в вакуум, чтобы избежать поглощения этих лучей в воздухе.
Фиг. 286. Спектр электромагнитных волн.
Спектры рентгеновских лучей
Если длины волн видимого света измеряются многими тысячами ангстрем (А°), то рентгеновские лучи обладают значительно более короткой длиной волны, близкой к 1 А°.
Едва ли мыслимо нарезать столь тонкую решетку, у которой штрихи были бы расположены на расстоянии, скажем, 10 А° один от другого, чтобы наблюдать дифракцию рентгеновских лучей. (Правда, при наклонном расположении обычных решеток рентгеновские лучи «видят» уменьшенное расстояние между штрихами.) Мы же используем слои атомов в кристаллах. Электроны атомов в каждом слое рассеивают рентгеновские лучи в виде слабой «отраженной волны». Волны одной длины, отраженные от ряда слоев атомов под определенным углом, складываются в заметный по интенсивности пучок, совсем как при образовании обычного спектра складываются волны, идущие от штрихов решетки. Таким образом, имея кристалл известной структуры, можно измерить длину волны рентгеновских лучей (фиг. 287), а значит, использовать рентгеновские лучи для исследования расположения атомов в кристаллах. Оказалось, что все твердые тела имеют кристаллическое строение и даже у жидкостей расположению молекул присуща известная локальная упорядоченность.
Фиг. 287. Дифракция рентгеновских лучей в кристалле.
Линейчатые спектры
Направленный на дифракционную решетку свет, испускаемый сильно нагретым газом, скажем парами натрия при внесении в пламя соли или неоном в газосветных лампах рекламного освещения, содержит всего несколько цветов. Его спектр состоит из разделенных темными промежутками полос, настолько узких, что каждый цвет образует тонкую «линию». Натрий дает желтую линию — фактически две расположенные близко друг к другу линии. Неон дает много линий. Водород, если заставить его светиться, испускает серию линий — красную, зелено-синюю, синюю, фиолетовую, причем промежутки между линиями подчиняются простому закону. Ртуть дает две желтые линии (фиг. 288), очень яркую зеленую линию, фиолетовую и другие линии, но не испускает красного света — отсюда странный цвет ртутных ламп уличного освещения.
Фиг. 288. Спектры.
На измерении таких линейчатых спектров основан единственный в своем роде чувствительный метод анализа. Дело в том, что каждый химический элемент испускает характерные для него одного линии. Линии, присущие химическим элементам, если классифицировать их по длинам волн, распадаются на серии.
По длине волны линии легко вычислить ее частоту:
ЧАСТОТА = СКОРОСТЬ / ДЛИНА ВОЛНЫ, или v = c/λ
При классификация линий по сериям вместо длин волн стали пользоваться частотами, и теперь, ко всеобщему удовольствию, эта традиция утвердилась. Частоты линий в каждой серии описываются еще более простой формулой. Но дело не только в этом: в современной теории частота стала неотъемлемой мерой порции энергии каждого кванта света.
Примерно сто лет назад была проведена классификация линейчатых спектров по сериям и стали появляться правила, выражавшие закономерность распределения частот в серии. Некоторые из этих правил (например, для водорода) имели вид простых математических формул, однако они не укладывались в существовашие тогда представления о строении атома. Поэтому «происхождение спектров» в течение многих лет продолжало оставаться загадкой.
Рентгеновские лучи, наподобие белого света, тоже разлагаются в сплошной спектр с уменьшенным в тысячу раз масштабом λ и ряд узких «линий», добавляющихся к сплошному спектру. Частоты этих линий характерны для атомов того вещества, из которого сделан антикатод рентгеновской трубки. Линии характеристического рентгеновского излучения образуют серии, отличающиеся простотой построения.
Хорошо, если бы вы смогли увидеть различные спектры. Для наблюдения спектра вместо дифракционной решетки можно воспользоваться стеклянной призмой. Разложение белого света при помощи призмы основано на иной зависимости пути лучей различных цветов, слишком сложной для прямых измерений длины волны. Призма — дешевый прибор и дает нам простой способ наблюдения спектров.
Спектры поглощения
Раскаленные твердые и жидкие тела испускают «белый свет», который дифракционная решетка превращает в спектр. Иногда белый свет проходит через раскаленный газ или пар, температура которых ниже температуры раскаленного добела источника света. Это происходит, например, при прохождении солнечного света из центральных областей через более холодную солнечную атмосферу. В этом случае мы получаем «обратный линейчатый спектр» — спектр поглощения. В таком спектре характеристические линии «темные», т. е. в них отсутствует свет. Более холодные газы поглощают как раз те цвета, которые они сами испускают в нагретом состоянии. Это своего рода резонанс, т. е. «отклик» атомов газа на свет их собственной частоты, однако механизм этого явления оставался не вполне ясным, пока Бор не создал свою теорию атома.