ДЛИНА КАРТОНА / ВРЕМЯ ЗАТЕМНЕНИЯ
дает скорость тележки.
Нам потребуется трое часов: одни для измерения общей продолжительности движения между двумя пунктами А и В, в которых определяются скорости, другие для измерения того времени, когда картон проходит мимо пункта А, и третьи — для таких же измерений в пункте В.
Приведенная ниже задача иллюстрирует расчет ускорения.
Задача 5
Предположим, что длина картона, укрепленного на тележке, равна 60 см, а затемнение в пункте А продолжается 0,30 сек. Какова скорость тележки при прохождении пункта А? Если продолжительность затемнения в пункте В равна 0,10 сек, то чему равна скорость тележки а пункте В? Чему равно приращение скорости Δv? Если тележка проходит путь от А до В за 2,0 сек, то чему равно ее ускорение?
В задаче 5 ничего не говорится о том, что движение начинается из состояния покоя. Тележка, проходя мимо пункта А, находится в движении, и мы можем сообщить ей любой начальный толчок.
Таким образом, можно повторить эксперимент при самых различных начальных скоростях. Мы можем даже толкнуть тележку вверх так, чтобы, проходя первый раз мимо пункта А, она двигалась в обратном направлении; но при этом мы должны внимательно следить за знаками + и —. Измерения позволяют определить ускорение независимо от начальной скорости. Будет ли ускорение одинаково при различных начальных скоростях — это вопрос к самой природе. Чтобы ответить на него, вам придется принять участие в реальном опыте.
В условиях лаборатории вы сможете провести опыт с колесом, скатывающимся по наклонным направляющим. Измерить непосредственно ускорение или (возрастающую) скорость нелегко.
Вместо этого нужно измерить расстояние, пройденное от начала движения, и время движения, а затем проверить, удовлетворяют ли обе величины соотношению
ПРОЙДЕННОЕ РАССТОЯНИЕ ~ (ВРЕМЯ).
Собрав надежные данные измерений, необходимо произвести проверку как арифметически, так и на графиках.
ОПЫТ С УСКОРЕННЫМ ДВИЖЕНИЕМ
Продолжим рассмотрение воображаемого движения с постоянным ускорением. Предположим, что измерения дали следующие результаты:
Эти измерения слишком малочисленны, кроме того, они сделаны через такие интервалы, что трудно произвести надлежащую проверку, но для иллюстрации их достаточно. Четыре значения: 5,1; 5,4; 5,0; 5,3 — это результаты четырех попыток измерить время прохождения расстояния 60 см. Случайные ошибки могут быть устранены усреднением полученных результатов, хотя часть ошибок все же может остаться, например ошибка, возникшая вследствие преждевременного выключения секундомера нетерпеливым экспериментатором. Усредним полученные данные, складывая их и деля на 4:
СРЕДНЕЕ ВРЕМЯ = (5,1 + 5,4 + 5,0 + 5,3)/4 = 20,8/4 = 5,2 сек
Поступая подобным же образом с другими промежутками времени, можно составить табл. 2.
Беглый взгляд на эти цифры показывает, что время не возрастает пропорционально пройденному расстоянию. График на фиг. 8, построенный по этим значениям, свидетельствует о том же самом. Он показывает, что тело движется все быстрее и быстрее, т. е. с ускорением.
Фиг. 8. Зависимость пройденного расстояния от времени.
Правда, глядя на этот график, сказать нельзя, постоянно ли ускорение. Чтобы проверить это, построим другой график, который в случае постоянного ускорения будет иметь вид прямой линии. Какой график нужно строить, видно из предположения о постоянном ускорении и из дедуктивного отношения:
РАССТОЯНИЕ ~ (ВРЕМЯ).
Отсюда следует, что нужно построить на графике зависимость пройденного расстояния от квадрата времени. В соответствии с этим составим табл. 3.
Затем построим график фиг. 9.
Фиг. 9. Зависимость пройденного расстояния от квадрата времени.
Чтобы проверить, постоянно ли ускорение, проведем через начало координат «наилучшую» прямую. Мы произвольно проводим для проверки прямую линию, но стараемся провести ее так, чтобы она проходила «как можно ближе к возможно большему числу» точек на графике.
В этом примере точки лежат близко к проведенной прямой. Если мы считаем, что отклонения точек от прямой объясняются несовершенством нашей аппаратуры, то мы говорим, что, насколько можно судить из проведенных измерений, движение происходит с постоянным ускорением.
Построение графика с указанием возможных ошибок опыта
Если мы желаем яснее обнаружить наличие погрешностей в полученных нами данных, мы можем превратить каждую наносимую на график точку в пятно и представить таким образом погрешности измерения в величине времени и расстояния (см. фиг. 10, а, где точки, отвечающие измеренным значениям, заменены пятнами, характеризующими погрешность результата).