Количество движения — это вектор, обладающий величиной и направлением. Поскольку произведение (сила)∙(время) дает изменение количества движения, то количество движения должно подчиняться правилу сложения векторов точно так же, как и сила. Начертите оба вектора количества движения (они перпендикулярны друг другу) и, воспользовавшись этим построением, найдите сумму.
Треугольники со сторонами, пропорциональными числам 3, 4, 5, — это прямоугольные треугольники.
Гл. 22 («Исаак Ньютон») входит в т. 2 настоящего издания.
В «модельных» опытах, показанных на фиг. 225 и 226, мы наблюдаем линии тока в случае очень медленного течения, при котором определяющую роль играет внутреннее трение жидкости (вязкость). Более быстрое течение, при котором распределение давления определяется изменением количества движения, а не внутренним трением, дает точно такую же картину линий тока. При значительно более быстром течении линии тока превращаются в вихри.
Исключение составляет квантовая жидкость HeII. — Прим. ред.
Силы, обусловленные внутренним трением, пропорциональны v при ламинарном течении и v при течении с пограничным слоем, в то время как силы, обусловленные изменениями количества движения вследствие изменения скорости потока, пропорциональны v. Поэтому силы такого типа играют более важную роль при больших скоростях, до того как происходит и начинает играть большую роль образование вихрей.
В уравнении сила = (изменение Mv)/(время) Mv содержит множитель v, но время прохождения массы М пропорционально 1/v. Поэтому сила пропорциональна v.
Гл. 32 («Электрические цепи») входит в т. 3 настоящего издания
Гл. 30 («Плодотворное развитие кинетической теории газов») входит в т. 2 настоящего издания.
Такие законы следовало бы называть «предположениями ad hoc», а основанные на них построения — «теорией ad hoc»; ad hoc означает «для этой (цели)». Объяснения первобытных чародеев полны сделанными ad hoc предположениями об особых духах или воздействиях. Современная наука иногда тоже прибегает к ним, например, когда биологи для «объяснения» роста растений в направлении к свету говорят, что растения «стремятся быть лицом к солнцу». Мы считаем подобные объяснения неудачными, если не откровенным мошенничеством, за исключением тех случаев, когда они помогают связать вместе несколько различных фактов.
Такая картина приемлема для быстро вращающегося грубого мяча, вроде бейсбольного. Полное рассмотрение более сложно [см. Amer. Journal of Physics, 27, 589 (1959)]. Очень гладкий мяч, вращающийся с умеренной скоростью, увлекает только тонкий «пограничный слой» окружающего воздуха и часто отклоняется «не в ту сторону»!
Это рассуждение с помощью «встречного ветра» полезно. Его можно применить, например, при рассмотрении звуковых волн, где с помощью второго закона Ньютона оно позволяет нам предсказать, что скорость звука в воздухе будет равна √[(7/5 (давление воздуха)/(плотность воздуха)].
В «мелком» озере скорость течения пропорциональна 1/r. Но если бы А и В находились в «глубоком» океане, то скорость течения была бы пропорциональна 1/r. Распределение суммарных линий тока в обоих случаях было бы примерно одинаковым.
Вопрос трения о воздух сложен, и этот раздел можно опустить.
Энергию этого турбулентного движения оплачивает человек, который закупает для самолета бензин. В конце концов вихревое движение превращается в движение отдельных молекул, в теплоту, немного согревая воздух позади самолета, как раз на столько, на сколько он нагрелся бы, если бы для его подогрева сожгли такое же количество бензина!
В точности такой же результат получается и при рассмотрении неподвижного крыла во встречном ветре, имеющем скорость v, при условии, что крыло делает неподвижным весь воздух, который оно встречает.
Тогда опять за t сек крыло остановит слой воздуха длиной v∙t; его масса = (плотность)∙(A∙v∙t). Скорость этой массы воздуха изменяется от v до нуля; при этом теряется количество движения = (плотность)∙(A∙v∙t)∙(v).
Следовательно,
F∙t = d∙A∙v∙t, или F = d∙A∙v.
Заметьте, что этот расчет в точности напоминает задачу, в которой на стену льется струя воды из брандспойта. Действительно, в нашем случае струя воздуха обливает крыло. Как и в той задаче, (сила) ~ v.
В задаче в конце гл. 26 [(«Энергия») входит в т. 2 настоящего издания] показано, что после упругого столкновения мяча с массивным движущимся предметом скорость мяча возрастает на удвоенную скорость предмета. Таким образом, мяч приобретает одну и ту же долю, 2m/М, от количества движения предмета, независимо от скорости предмета. В нашем случае на такие столкновения накладывается беспорядочное движение молекул, но это не изменяет общего эффекта.
Задача не требует применения алгебраической записи принципа Бернулли. Ответ можно дать на основании простой формулировки принципа, но ход рассуждения требует внимания и смелости.
Гл. 44 («Современная физика») входит в т. 3 настоящего издания.
Проработайте предлагаемые задачи, заполняя пропуски, оставленные для ответов.