Физика для любознательных. Том 1. Материя. Движени - Страница 62


К оглавлению

62


Внутренние слои скрученного стержня претерпевают относительно малые деформации, создают малые противодействующие напряжения и, следовательно, мало участвуют в сопротивлении стержня скручиванию. Трубка почти так же прочна, как сплошной стержень, но намного легче.


Деформации в различных материалах

Жидкости и газы не оказывают постоянного сопротивления изменению формы, и, таким образом, модуль сдвига к ним неприменим. Но при изменении объема они проявляют упругие свойства, которые характеризуются объемным модулем сжатия. Жидкости подчиняются закону Гука, объем их изменяется в пределах большого диапазона давлений; газы легко отклоняются от закона Гука, и для них должен быть найден другой закон. Для твердых тел простые изменения сдвига и сжатия могут комбинироваться с более сложными видами деформаций, например в спиральных пружинах или в подъемно-транспортных машинах, и во всех случаях обычного поведения материалов по закону Гука отношение

...

НАПРЯЖЕНИЕ (соответствующее приложенным силам)/ДЕФОРМАЦИЯ (искажение)

выдерживается в широком диапазоне постоянным для данного материала; иначе говоря, (напряжение)~(деформация),


Закон Гука

Общая форма закона Гука

...

НАПРЯЖЕНИЕ/ДЕФОРМАЦИЯ = const

приложима ко всем материалам (в известных пределах) и ко многим видам деформации. Закон замечателен и полезен не только потому, что прост, но и вследствие широкого диапазона применения. Спиральная стальная пружина с плотно прилегающими витками может растягиваться до длины, в 5 или 10 раз превышающей первоначальную, прежде чем достигнет своего предела пропорциональности.

Можно изогнуть деревянную балку или навить «волосок» (спиральную пружину) под большим углом все еще по закону Гука. Даже обыкновенная металлическая проволока, подвергнутая растяжению, удовлетворяет закону Гука в пределах удивительного диапазона удлинений, оставляя далеко позади ничтожно малое удлинение, вызванное нагреванием. Можно представить себе, что ее атомы, нагруженные по отдельности тянущей силой, направленной против электрического притяжения, испытывают влияние индивидуальных сил, действующих по закону Гука.

Если построить кривую, представляющую величину у, деформацию, в зависимости от величины х, представляющей напряжение, закон Гука будет выражен прямой линией, проходящей через начало координат. Эта линия выражает зависимость у = . Точная формулировка для реальных материалов может быть гораздо более сложной математической зависимостью, но во многих случаях, когда у = (сложная функция х), мы можем выразить ее в виде ряда

у = А + Вх + Cx + Dx +…,

где А, В, С…. — постоянные величины. В этом случае у = 0, когда х = 0 (если не приложено напряжение, то нет и деформации). Следовательно, А должно быть равно нулю. Из эксперимента известно, что закону Гука хорошо соответствует предположение, по которому С, D…. весьма малы. Тогда по закону Гука у ~= Вх. Однако, когда х возрастает, значения x, x и т. д. возрастают даже больше (поскольку при удвоении х значение x становится в 4 раза больше, x — в 8 раз больше и т. д.). Следовательно, если С, D…. не равны точно нулю, мы должны ожидать, что их предельные значения становятся ощутимыми при больших напряжениях. Широкий диапазон применения закона Гука говорит нам, что эти константы удивительно малы. Все же они существуют, поэтому мы должны рассматривать наш великий и простой закон Гука только как гипотезу, очень близкую к природе. Открыли мы эту простую зависимость или измыслили ее?

Глава 6
Поверхностное натяжение: капли и молекулы

«В науке необходимо воображение. Она не исчерпывается целиком ни математикой, ни логикой, в ней есть что-то от красоты и поэзии.»

Мария Митчелл (American Astronomer, 1860 г.)

Эта глава не составляет неотъемлемой части курса. Включили мы ее по следующим причинам:

1) Материал позволяет провести ряд красивых опытов, причем некоторые из них могут быть осуществлены в домашних условиях. Сначала рекомендуется проделать опыты и оценить их красоту, а потом уже читать текст.

2) На примере этой главы видно, как происходит исследование определенной области явлений: сначала делаются наблюдения, которые затем интерпретируются, потом высказываются предположения и проверяются снова на опыте. В результате накапливаются полезные сведения и достигается научное понимание явлений.

3) Наряду с выяснением разнообразных практических вопросов (от образования мыльной пены до добычи золота) в главе рассказывается, как определяются размеры молекул, и это пригодится нам при последующем изучении атомов.


...

ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

Начнем исследование поверхностей жидкостей с наблюдения.

Общие наблюдения. Рассмотрите форму небольших капель:

Опыт 1. Капли, капающие из водопроводного крана.

Опыт 2. Лужицы жидкости на столе: а) вода на чистом стекле; б) вода на стекле, покрытом воском; в) ртуть на стекле. Их форма грубо изображена на фиг. 110, б, однако следует, конечно, поступать мудро и наблюдать форму капель в реальных условиях; рисунки в книге годятся лишь для запоминания. Действительно ли слеза на щеке героини имеет ту форму, которая изображается на рисунках в романах?

Опыт 3. Капли дождя представляют собой идеальные шарики, но за ними непосредственно наблюдать очень трудно. Два источника позволяют получить косвенные доказательства: размер и положение которая появляется точно в том месте, где ей следует быть, лишь при условии, что капли дождя круглые (если бы капли имели неправильную форму, положение радуги смещалось бы), и форма свинцовой дроби, получаемой по старинному способу в дроболитейных башнях (фиг. 110, г): расплавленный свинец, разливаемый сквозь сито, падал в виде дождя в глубокий бак с водой и там превращался в круглые шарики.

62