Фиг. 159. Символический эксперимент.
Поскольку результат символического эксперимента, подтверждающего, что все тела падают с одинаковым ускорением, имеет важное значение, необходима значительно более точная проверка, нежели простое наблюдение за падающими телами в воздухе. Мы хотим объединить тысячи случаев падения в одном-единственном. Нам также хотелось бы устранить помеху в виде сопротивления воздуха. Это задача, о которой мы говорили в гл. 1 и там же обещали познакомить вас с ее решением. Существует простой и очень точный метод.
Вы оцените его, познакомившись с ним. (Для метода, о котором идет речь, не нужно вакуумных насосов или электронных часов, хотя, по-видимому, подобные методы в течение ближайших нескольких лет заменят простые способы проверки.) Ньютон знал этот метод и воспользовался им в качестве контрольного эксперимента применительно к столь разным материалам, как свинец, золото, песок, соль, дерево, вода и даже пшеница. В начале нынешнего столетия Дж. Томсон и другие исследователи использовали его для дальнейшей проверки влияния на М и М того, что мы сейчас называем ядерной энергией. Уже тогда существовало подозрение, что энергия, как и вещество, обладает инерцией. Обладает ли она также гравитационной массой? Было известно, что радиоактивные атомы освобождают при распаде огромное количество энергии, поэтому они должны содержать запас энергии, которая может быть освобождена и которая обладает, вероятно, значительной инертной массой. Экспериментаторы повторили контрольный опыт Ньютона, сравнив образцы радиоактивных материалов с обычными, и получили одинаковые значения.
Более простой подход к рассмотрению веса и массы
Поскольку различные массы, по-видимому, имеют одну и ту же величину, мы можем опустить индексы и обозначить массу просто буквой М.
Фиг. 160. Сравнение инертных масс.
Рассмотрим вопрос о весе и массе быстро, без прежней осторожности. Опыт с бросанием тел с большой высоты говорит нам, что любые тела А и В падают с одинаковым ускорением. Веса обоих тел Wи W действуют на их массы Ми М и сообщают каждой ускорение g.
Применяя соотношение F = K∙M∙a, получаем
W= K∙М∙g и W= K∙М∙g
т. е.
W/W = М/М
Следовательно, мы можем сравнивать массы взвешиванием.
Именно это мы делаем на практике: сравниваем или уравновешиваем силы Wи W и говорим, что сравниваем массы Ми М. (Мы уже проделали это без всяких околичностей, подготовив массы М, 2М, 3М путем взвешивания для демонстрационного опыта.)
Измерение масс взвешиванием. Итак, мы можем сравнивать массы взвешиванием. Пружинными и рычажными весами, где мы имеем дело с силами, пользоваться значительно удобнее, чем тележками на рельсовых путях. Поэтому все точные измерения массы производятся взвешиванием; наша проверка закона сохранения массы тоже основана на точном взвешивании.
Однако то обстоятельство, что W/W = М/М, никоим образом не дает нам основания считать массу и вес тождественными величинами. С таким же основанием мы могли бы считать, что стоимость некоторого количества молока и его объем одно и то же просто потому, что С/С = V/V.
Сохранение массы
Развитию химии, которое шло с поразительным отставанием от развития ньютоновой механики, способствовало представление о неизменности общей массы. При химических превращениях происходит обмен атомами, входящими в состав веществ, но общая масса не меняется. Это было проверено взвешиваниями, которые становились все более искусными; последнее время производили взвешивания в миниатюрных химических лабораториях, имеющих вид запаянного стеклянного сосуда (фиг. 161).
Фиг. 161. Миниатюрная химическая лаборатория.
Даже самыми точными экспериментами, проведенными в прошлом столетии, по-видимому, не удалось обнаружить ничтожную массу, уносимую, как мы считаем, в виде тепловой энергии, выделяющейся при некоторых химических реакциях. Таким образом, мы долго верили в сохранение массы, в представление о том, что общее количество вещества остается постоянным при всех изменениях движения и при любых химических превращениях. Только в нынешнем столетии выяснилось, что эта точка зрения слишком ограничена. Как бы ни было трудно дать определение массы, для тех, кто с ней работает, понятие «масса» кажется простым и реальным. Физики построили механику движения на основании предположения, что масса — это постоянное свойство вещества, что масса сохраняется. Химики проверили сохранение массы и затем стали опираться на него для дальнейшего развития химических знаний. В повседневной жизни, как и в науке и технике, мы по-прежнему считаем закон сохранения массы не требующим доказательства.
В прошлом веке появился закон сохранения энергии (см. гл. 26 и 29) и укрепилось убеждение в его правильности: сперва появилось представление об энергии, потом гипотезы, затем последовали строгие проверки, и, наконец, когда сошлись все данные, подтверждавшие этот закон, вера в него стала непреложной. Только в нынешнем столетии мы до конца поняли, что энергия сама обладает массой, так что оба великих закона сохранения можно объединить в один закон огромной важности и универсального значения.