На плоту, покоящемся на поверхности озера, стоит мальчик. Мальчик начинает шагать по плоту, описывая большой круг, и продолжает двигаться по кругу с постоянной скоростью. (Сопротивлением воды можно пренебречь.)
Как будет вести себя плот? (Попытайтесь сообразить, что произойдет. Ответ будет подсказан в гл. 22)
«Причудлив парадокса путь —
С ним здравый смысл ты позабудь.»
У. С. Гильберт
Как может летящий мяч «завернуть» в сторону? Почему поток воздуха в пульверизаторе засасывает жидкость вверх, а не гонит ее вниз? Эти и множество других причуд в поведении ветра и текущей воды при ближайшем рассмотрении оказываются примерами ускоренного движения, подчиняющегося второму закону Ньютона. Когда подталкивают автомобиль и он начинает двигаться быстрее, это никого не удивляет. Можно было бы ожидать, что ускоренное движение жидкости будет приводить к столь же привычным результатам. Однако же на самом деле мы сталкиваемся тут с рядом неожиданных эффектов. Эти эффекты были исследованы математиком Бернулли и потому получили его имя. Некоторые из них используются в различных областях физики, другие помогают понять сущность важных явлений. Мы рассмотрим несколько таких эффектов и покажем, что они возникают как следствие обычных законов механики.
ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ
Опыты 1 и 2 демонстрируют два «парадокса Бернулли».
Опыт 1. Поток воздуха в стеклянной воронке притягивает легкий шарик (фиг. 221).
Поток воздуха, направленный вниз, втягивает, несмотря на силу тяжести, шарик в воронку и удерживает его там. За счет чего происходит этот подъем, как будто противоречащий здравому смыслу? В горловине поток воздуха, сжатый в узком промежутке, должен двигаться быстрее, и, казалось, можно было ожидать, что он вытолкнет шарик, а между тем шарик втягивается в воронку.
Фиг. 221. Струя воздуха поднимает шарик и удерживает его в воронке.
Опыт 2. Струя воздуха может поддерживать легкий шарик (фиг. 222).
Если струю повернуть, шарик удерживается около нее и не падает. Струя воздуха ударяет в шарик, и мы снова ждем, что поток должен оттолкнуть шарик, однако этого не происходит.
Фиг. 222. Струя воздуха поддерживает шарик.
Ламинарное и турбулентное течения
Для объяснения этих парадоксов надо изучить свойства ламинарного спокойного течения. Когда по трубке течет установившийся поток жидкости или газа, отдельные части потока движутся вдоль плавных линий тока, форма которых определяется стенками трубки (фиг. 223 и 224).
При более быстром потоке линии тока около препятствия в трубке могут закручиваться в виде вихрей или водоворотов, а при еще большей скорости даже в прямой трубке линии тока исчезают в беспорядке бурного турбулентного движения.
Фиг. 223. Линии тока около препятствия.
Фиг. 224. Линии тока жидкости в трубке.
Опыт 3. Линии тока в медленно текущей воде можно продемонстрировать с помощью чернил (фиг. 225) или с помощью кристаллов красителя (перманганата калия), которые окрашивают проходящий мимо них поток воды (фиг. 226).
Фиг. 223. Демонстрация линий тока.
Фиг. 226. «Родник и сток» в озере.
Опыт 4. Если двигать ложку в тарелке с супом или палец в тазу с водой, на поверхность которой посыпан порошок, то за ними остаются «вихри» (водовороты). Струйка красителя, вводимая в текущую по трубе воду, при медленном течении следует вдоль линии тока, но если скорость потока превысит критическую, она начинает колебаться, разбиваться на вихри и растворяться в общем бурном потоке, так что окраска распространяется по всей воде (фиг. 227).
Фиг. 227. Ламинарное и турбулентное течения.
Теперь рассмотрим движение твердого предмета, например рыбы или самолета, в покоящейся жидкой или газообразной среде. На пути движущегося предмета среда должна расступаться. Такие перемещения трудно представить себе, поэтому мы заставим двигаться среду в виде постоянного потока, а предмет неподвижно закрепим, подобно модели в аэродинамической трубе. Тогда среда будет двигаться вдоль линий тока, отклоняющихся вблизи предмета. Поток, заключенный между двумя выделенными линиями тока, должен все время оставаться между ними. Когда линии тока изгибаются и поворачиваются, сближаются или расходятся, поток должен течь между ними, как река между берегами. (Поскольку движение происходит именно вдоль этих линий тока, то поток не может проходить поперек них.) Там, где трубка сужается и линии тока приближаются друг к другу, поток должен двигаться быстрее, потому что одной и той же массе вещества приходится каждую секунду проскакивать через более узкое пространство (фиг. 228). И вообще там, где линии тока сближаются, скорость течения возрастает.