Физика для любознательных. Том 1. Материя. Движени - Страница 125


К оглавлению

125


Фиг. 270. Разложение прямоугольного сигнала на гармонические составляющие.


Для точного описания необходим бесконечный ряд составляющих, отношение частот которых к частоте исходной кривой равно 1, 3, 5, 7… Однако даже сумма нескольких первых составляющих дает удовлетворительное приближение (если не считать нежелательных выбросов на вершине). Так мы получаем удобный способ проверки динамиков, микрофонов и т. д. На прибор подают прямоугольный сигнал. Если прибор хорошо воспроизводит форму прямоугольного сигнала, это значит, что он способен пропускать как очень высокие, так и весьма низкие частоты.

в) Речевые колебания часто имеют сложную форму. На фиг. 271 показана довольно простая по форме кривая, которая представляет собой графическое изображение звука «у…», произносимого нараспев. Вы можете предсказать результат разложения этого колебания на гармонические составляющие: основной тон + тон значительно более высокой частоты, который мы считаем характерным для данного гласного звука. Такой анализ чрезвычайно важен для инженеров: им пользуются при проектировании систем телефонной связи, по которой передается речь, при разработке экономичных преобразователей речевых колебаний в кабельной телефонии и высококачественных приемников, предназначенных для воспроизведения речи. Произнесенные нараспев другие гласные звуки или недостаточно искусные певцы вызывают гораздо более сложные с виду колебания, но эти колебания тоже можно без труда разложить на несколько основных составляющих.



Фиг. 271. Кривая звука «у…».


г) «Волновой пакет». Гармонический анализ можно применить к одиночному импульсу (ему соответствует звук от шлепка или радиоволна, испускаемая при ударе молнии) и к короткому цугу волн, вроде волнообразного всплеска, которым в современной теории характеризуют положение движущегося электрона. Для идеального представления таких сигналов приходится складывать составляющие, которые образуют бесконечный набор частот, но составляющие с заметной амплитудой равномерно распределены в пределах полосы частот вокруг исходной частоты.

Мы должны составить сумму, содержащую основную составляющую с длиной волны исходного цуга волн + составляющую с несколько большей длиной волны +… + составляющую с еще большей длиной волны… + и т. д., и такой же набор более коротких длин волн. Горбы этих составляющих совпадают друг с другом в центре, но дальше согласованность их хода нарушается, и они гасят друг друга. Если исходный цуг волн длинный, то основные составляющие будут заключены в узком интервале частот или длин волн — чем длиннее цуг, тем уже полоса частот. Напротив, для очень короткого цуга (в предельном случае для отдельного выброса или импульса) требуется широкая полоса частот. (Это не очевидно; не обращаясь к математике, вы можете в лучшем случае сказать, что это могло бы быть так.) Изложенные представления имеют важное значение в современной атомной теории.

Основное достоинство гармонического анализа (который, как утверждает теорема Фурье, может быть применен всегда) состоит в том, что он позволяет с помощью простого математического описания разлагать сложные движения на серию гармонических колебаний. Гармонический анализ находит широкое применение в физике и технике, им пользуются специалисты в области телефонной связи, радиоинженеры, составители таблиц, предсказывающих океанские приливы, и т. д., а в наши дни и физики-теоретики, которые описывают поведение атомов и электронов с помощью гармонических составляющих.



Фиг. 272. Гармонический анализ.

 






Применение математического анализа и формула маятника

Начнем с движения, определяемого соотношением

s = A∙sinkt

где А — амплитуда, а k — постоянная. Продифференцируем смещение s по времени t и найдем скорость, затем произведем дифференцирование еще раз и найдем ускорение

= ds/dt = k∙A∙coskt

= dv/dt = — kA∙sinkt = — ks

Отсюда видно, как вычислить период Т рассматриваемого движения:

...

Т = Промежуток времени от t = 0 до t = T,

= Промежуток времени, в течение которого проходит полный цикл изменения s,

= Промежуток времени, в течение которого величина (kt) пробегает значения от 0 до 2π;.

т. e.

период Т= 2π/k.

Таким образом, относительно любой системы, которой действующие на нее силы сообщают ускорение — ks, можно сказать, что «эта система способна совершать простые гармонические колебания с периодом 2π/k».


«Формула маятника»

Мы уже показали, что при малых отклонениях маятника

УСКОРЕНИЕ ГРУЗА = (g/L)∙s

Сравним это с полученным выше результатом

УСКОРЕНИЕ = —ks

Величина, равная в общем виде [кг], в случае маятника равна [g/L].

Таким образом,

125