Физика для любознательных. Том 1. Материя. Движени - Страница 127


К оглавлению

127


Фиг. 276. Продольные волны и их графическое представление.


Свойства волн

Волны отражаются (звук от стены, водяные волны от волнолома) и «преломляются» (если волны попадают в область, где они имеют другую скорость, линия их распространения изгибается). Подробно с этими свойствами волн можно познакомиться по другим учебникам (главным образом учебникам по оптике).

Там показано, что отражение и преломление волн следует законам, которые уже известны по экспериментальному изучению отражения и преломления света. Гюйгенс — современник Ньютона — подробно изучил эти свойства и предположил, что свет представляет собой волны. Сам Ньютон отвергал это представление, ибо сомневался в том, что волны могут отбрасывать столь резкие тени. Он считал, что свет представляет собой поток частиц — корпускул, которые в соответствии с простой механикой должны претерпевать отражение и преломление подобно волнам.

Приведем пример применения волнового представления в оптике. На фиг. 277 схематически представлено, как свет фокусируется линзой. Лучи от раскаленного добела источника сводятся в обжигающее пятно, изображение источника.



Фиг. 277. Образование изображения световыми лучами.


Исходя из концепции волн, мы считаем, что источник излучает сферические волны (как на фиг. 278), которые становятся все больше, пока не достигнут линзы. За пределами линзы волны должны сокращаться в размерах по мере того, как сходятся в изображение, собираясь там практически в точку. (Изображение представляет собой область с наибольшей плотностью потока энергии.) Но как же волна под действием линзы превращается из выпуклой в вогнутую? Очевидно, что утолщенная центральная часть линзы должна приводить к задержке проходящей через нее волны так, чтобы выпуклость волны N (которая проходит через центр линзы) задерживалась больше всего и оказывалась за линзой N'. Следовательно, волна должна распространяться в стекле медленнее, чем в воздухе.

Что же касается корпускул, то они, чтобы следовать после линзы по тем же искривленным путям, должны двигаться в стекле быстрее, чем в воздухе.



Фиг. 278. Волны света.


На фиг. 279 показана траектория частицы вдоль луча света. Частица, двигаясь вдоль луча CDE, должна притягиваться стеклом в точке D (подобно молекуле пара, возвращающейся в жидкость) и, следовательно, должна двигаться в нем быстрее. Здесь можно произвести «решающий эксперимент» и проверить, какая из двух теорий света — волновая или корпускулярная — правильна; следует сравнить скорости света в воздухе и в стекле (или в какой-нибудь другой плотной среде, такой, как вода).



Фиг. 279. Траектория частицы света.


До 1850 г. этого не удавалось проделать, но потом измерения показали, что свет распространяется в воде медленнее, чем в воздухе. Еще до получения этого убедительного результата имелись другие наблюдения, которые указывали на существование волн света, — дифракция и интерференция.


Дифракция: огибание волнами препятствий

Понаблюдайте, как волны на поверхности воды проходят между двумя барьерами. Проходя через широкий зазор (в котором укладывается много длин волн), волны продолжают распространяться в прежнем направлении, а по бокам остается спокойная вода, т. е. тень. Если зазор более узкий, угол, в котором волна распространяется после прохождения зазора, стремится расшириться. При очень узком зазоре это расширение становится максимальным: волна распространяется по всем направлениям в передней полуплоскости. (Гюйгенс указывал, что этого следует ожидать. Подойдя к преграде, волны заставляют колебаться воду в узком зазоре, и это порождает круговую рябь. Вода за преградой не «знает», что служит источником волн, не вызывает ли волны, скажем, погруженный в воду палец, которым двигают вверх и вниз в зазоре?.

Значит, мы должны ожидать, что от узкого зазора, ширина которого составляет лишь долю длины волны, волны будут распространяться по всем направлениям.) Это изменение направления волн, в результате которого волна распространяется в широком диапазоне направлений, или огибание волнами препятствий, называется дифракцией.

Если свет представляет собой волны, то почему солнечный свет проходит через булавочный прокол в виде резко очерченного пучка и не рассеивается? Потому что обычный булавочный прокол — это широкое отверстие; ширина его, как мы теперь знаем, составляет тысячи λ! Если свет находит в преграде очень маленькое отверстие, он рассеивается. Проделайте такой эксперимент. Посмотрите сквозь булавочный прокол в картонке или щель между указательным и большим пальцами на находящийся где-то вдали зажженный уличный фонарь. Вы увидите резко очерченные контуры фонаря без заметного рассеяния, т. е. без дифракции. Попробуйте посмотреть на фонарь через булавочный прокол меньшего размера. Если взять очень маленькое отверстие, то сквозь него не только будет проходить меньше света, но свет от уличного освещения будет казаться вам размытым: начнет проявляться дифракция. Можно воспользоваться сеткой с очень маленькими отверстиями: куском легкой ткани вроде зонтичной или шелковым носовым платком. Теперь уличный фонарь представится вам в виде узора из ярких пятен. Измерения в этом случае могут помочь оценить значение λ. Волны могут (и должны) создавать такую картину, когда отверстия отстоят одно от другого на несколько λ, частицы же создавать ее не могут. Попробуйте просеять песок (изображая таким образом поток частиц) через мелкое проволочное сито. На столе образуется горка, а не другая какая-нибудь конфигурация из отдельных холмиков.

127