Фиг. 12. Различные варианты графика фиг. 8, изображающего зависимость пройденного расстояния от времени.
Мы можем выяснить это, рассуждая следующим образом: согласно полученным данным, тело начало двигаться из состояния покоя. Следовательно, начальная скорость тела равна нулю. Поэтому наклон касательной к кривой в начале координат должен быть равен нулю, касательная должна быть расположена горизонтально. Отсюда можно заключить, что из трех кривых фиг. 12 верна, по-видимому, средняя.
Арифметическая проверка постоянства ускорения
Результаты нашего мысленного опыта можно еще проверить с помощью арифметического расчета. Если ускорение постоянно, то
РАССТОЯНИЕ = (ПОСТОЯННАЯ)∙(ВРЕМЯ).
Поэтому расстояние/(время) = const. И наоборот, если отношение (расстояние)/(время)постоянно, то постоянно и ускорение. Чтобы проверить это, расширим нашу таблицу, дополнив ее еще одним столбцом (табл. 4).
Чтобы из чисел, приведенных в последнем столбце, сделать определенный вывод, необходимо знать точность измерений. Иначе мы сможем лишь сказать, что движение, по-видимому, происходит с ускорением, довольно близким к постоянному.
Как графический, так и арифметический способы проверки, о которых только что шла речь, трудно применить при малом количестве данных. Но это всего лишь мысленный пример: истинная проверка должна явиться результатом ваших собственных опытов.
Труды многих ученых специалистов и тех, кто просто интересуется физикой, утвердили веру в открытие Галилея: тела, свободно падающие под действием земного тяготения, и тела, скользящие или скатывающиеся вниз по наклонной плоскости под действием с1, илы тяжести, движутся с постоянным ускорением.
Дальнейшие эксперименты показывают, что ускорение имеет одно и то же значение даже в том случае, если тело начинает, движение не из состояния покоя, а получив толчок. Если в момент пуска часов тело имеет скорость v, то соотношение s = /at уже неверно; мы должны воспользоваться в этом случае соотношением s = v + /at (см. приложение I). Однако ускорение а остается тем же самым. Едва ли оно могло бы быть другим: каким образом шар может «узнать», что он начал двигаться после полученного толчка, а не скатывался с большей высоты по той же самой наклонной плоскости?
Величина ускорения
Эксперименты не просто убеждают нас в том, что ускорение постоянно, а дают его фактическое значение. Если а постоянно, то расстояние = (/а)∙(время), и (расстояние)/(время) = 1/а (ускорение).
Таким образом, в нашем случае 0,076 и т. д. представляет собой оценки величины /а. Отсюда получаем а = 0,152, или /. Но указать число /недостаточно — две тринадцатых чего?
Подобное число само по себе ничего не дает, если не сказано, в каких единицах оно выражено. Мы получим это число, разделив расстояние в метрах на (время). Поскольку время измеряется в секундах, ответ должен быть в м/сек (читается: «метр на секунду в квадрате» или «метр в секунду за секунду»).
Единицы измерения ускорения
Вернемся к определению ускорения и найдем единицы, в которых оно выражается:
a = [Δv, измеренное в единицах скорости, т. е. м/сек]/[Δt, измеренное в единицах времени, т. е. сек] = УСКОРЕНИЕ, измеренное в единицах ускорения, т. е. м/сек∙сек
Таким образом, ускорение измеряют в единицах м/сек∙сек, которые мы записываем в виде м/сек∙сек, или м/сек.
Употребление слов «на» и «в»
Слова «на» и «в» нашли широкое употребление в науке. Мы употребляли их выше в значении «деленное, на» или «на каждый (каждую)…», т. е. в значениях, которые они имеют в обычной арифметике. Позднее мы будем говорить об ином значении этих слов, когда они используются для словесного выражения отношения или пропорции.
В арифметике мы делим 10 центов на 5 и получаем 2 цента. Или мы делим 10 овец по 5 овец и получаем 2 отары. Мы сомневаемся в возможности делить 10 овец на 5 центов — ведь речь идет, возражаем мы, о предметах разного рода. Но иногда мы делим предметы одного рода на предметы другого рода, например, если 10 центов разделить на 5 мальчиков, то у каждого мальчика окажется в кармане 2 цента. А разделив 60 центов на дюжину апельсинов, получим стоимость каждого апельсина. В науке часто производят подобные деления, и чтобы ответ был верным, он должен содержать как число, так и единицы измерения. Если жук, двигаясь с постоянной скоростью, проползает 3 да за 2 часа, то мы можем сказать: «Если разделить 3 м на 2 часа, т. е. записать 3 м/2 часа, то получим 1,5 м в час». Ответ показывает расстояние, которое жук проползает за каждый час, но это не означает, что жук передвигается обязательно в течение одного часа. Это применимо и к / часа, и к / часа, и к 1/2 часам, а возможно, и к 2/ часам.
Эта формулировка применима даже к очень коротким интервалам времени: жук может ползти с той же самой скоростью 1,5 м в час в течение нескольких секунд. Мы можем мысленно сократить интервал времени, по-прежнему считая, что жук ползет со скоростью 1,5 м в час. В пределе мы говорим, что жук обладает скоростью 1,5 м в час в некоторый определенный момент времени. Это уже новое представление, представление о скорости в некоторый момент времени. Мы не можем теперь делить расстояние на промежуток времени — деление нуля на нуль не имеет смысла; тем не менее спидометр будет показывать в какой-то момент времени скорость 1,5 м в час. Правда, настоящий жук передвигается то быстрее, то медленнее, но мы легко можем представить себе идеального жука, передвигающегося с постоянной скоростью. В таком случае единица «один метр в час» — это уже не результат деления, а самостоятельная величина, единица скорости изменения пути, и скорость 1,5 м в час — это скорость изменения пути, предельное значение, отмеченное в некоторый момент времени.