Физика для любознательных. Том 1. Материя. Движени - Страница 18


К оглавлению

18

Математическое понятие предела появляется и в физике, и в математическом анализе. Чтобы постичь сущность понятия предел, посмотрим, чему равна сумма большого числа членов ряда: 1, /,/, /, /…. Сумма первых двух членов равна 1/2, сумма трех членов 1/, десяти членов 1/ и т. д. Сколько бы членов ряда мы не брали, сумма никогда не будет в точности равна 2, но можно как угодно близко подойти к 2, если взять достаточно большое число членов ряда. (Заметим, что сумма всегда меньше 2 на величину, равную как раз последнему взятому члену. Поэтому эту разность можно сделать как угодно малой.) Таким образом, мы говорим, что 2 есть предел суммы большого числа членов ряда.

Наклон касательной, о котором шла речь выше, тоже представляет собой предел, а именно предел наклона хорды, проходящей через две точки на графике.

До нынешнего века физики имели дело с большим числом непрерывно изменяющихся отношений, таких, как скорость, плотность, освещенность. Теперь же оказалось, что множество физических величин характеризуется скачкообразным изменением, подобным резким изменениям скорости настоящего жука; эти величины не удается непрерывно уменьшать до предельных значений. Для примера рассмотрим отношение (масса)/(объем), которое мы называем плотностью. Мы можем поделить массу большого куска алюминия на его объем или массу маленького куска алюминия на его объем и получим одинаковую плотность.

Но если мы попытаемся продолжать определять таким образом плотность, переходя ко все меньшим и меньшим количествам вещества, то, дойдя до одного-единственного атома, вынуждены будем остановиться. Какие отношения физических величин можно вычислить в пределе в математическом смысле этого слова? Какие величины не обладают «атомистической» природой? Этот вопрос заслуживает внимания, и мы вернемся к нему в самом конце нашего курса. Употребляя слова «на» или «в» или знак косой черты, который их заменяет, для обозначения понятия «деленный (деленная) на» или «на каждый (каждую)», стоит подумать, что эти слова играют определенную роль в представлении об отношении.


Единицы измерения, применяемые в науке

В обыденной жизни мы измеряем скорость в метрах в секунду или в километрах в час; инженеры тоже часто пользуются этими единицами. Ускорение мы выражаем в м/сек на секунду, а иногда в таких менее привычных единицах, как км/час на секунду. Однако ученые во всем мире условились применять метрическую систему единиц, и мы будем пользоваться одним из вариантов этой системы, системой метр — килограмм — секунда. В этой системе (ее называют сокращенно «системой МКС») длины и расстояния измеряются в метрах, масса вещества — в килограммах, а время — в секундах. Точная длина метра определяется длиной тщательно сохраняемого бруска из тугоплавкого металла, копии которого находятся в метрологических лабораториях всего мира.

Килограмм представлен куском из тугоплавкого металла, принятого за эталон. Метр делится на 100 сантиметров (каждый сантиметр соответствует примерно ширине пальца), а килограмм делится на 1000 граммов. Хотя во многих курсах физики применяют единицы сантиметр и грамм, мы примем новую используемую сейчас систему единиц — метр и килограмм, дабы облегчить понимание таких электрических единиц, как амперы и вольты. Метр и килограмм сокращенно обозначаются м и кг.



Грамм первоначально был определен как масса одного кубического сантиметра воды. При этом плотность воды (масса/объем) приобретает удобное значение 1,00 г в 1 см (удобное, но чреватое недоразумениями, и его без всякого ущерба можно опустить). Плотность воды вовсе не равна 1,00 кг/м; полый куб с внутренними размерами 1 м х 1 м х 1 м вмещает 1000 кг воды, поэтому плотность воды равна 1,00 г/см, или 1000 кг/мг.

В нашей системе МКС скорости измеряются в метрах в секунду, а ускорения — в метрах в секунду на секунду.


Ускорение свободного падения

Ускорение свободного падения можно измерить. Показать, что ускорение постоянно, когда тело падает все быстрее и быстрее, трудно, хотя, конечно, это можно сделать с помощью современных приборов для измерения времени; некоторые из этих приборов позволяют измерить промежуток времени с точностью до одной миллионной доли секунды. Если принять, что ускорение постоянно, то его довольно легко измерить, определив промежуток времени, за который тело проходит известный отрезок пути, и воспользовавшись соотношением s = / at. Отсюда a = 2s/t. Постоянное ускорение свободного падения, происходящего «под действием земного притяжения», обозначают символом g и записывают g = 2s/t. Подставляя в эту формулу полученные из опыта значения s и t, можно вычислить g. Однако сопротивление воздуха ограничивает точность полученного значения; кроме того, трудно быть уверенным в том, что мы начинаем отсчет времени именно в тот момент, когда тело начинает двигаться, а продолжительность падения тела весьма мала, поэтому такие измерения не дают точного значения g. А для решения ряда задач в физике необходимо точно знать значение g. Можно ли исключить влияние сопротивления воздуха? Нельзя ли наблюдать падение тела много раз, скажем, несколько тысяч раз и, измерив общее время для всех опытов, определить время одного падения с большей точностью? К этой, на первый взгляд совершенно недостижимой цели приводит задуманный еще Галилеем простой опыт.

18