Физика для любознательных. Том 1. Материя. Движени - Страница 19


К оглавлению

19

Измерения дают значение g, близкое к 9,8 м/сек. На экваторе g несколько меньше, а на Северном полюсе — несколько больше.


Сила и ускорение

Мы считаем, что на падающее тело действует сила притяжения Земли, направленная вниз; мы называем ее весом тела. Чтобы удерживать тело в подвешенном состоянии, мы должны создать опору, способную выдерживать полный вес тела. Перерезав веревку, на которой подвешено тело, мы считаем, что на тело по-прежнему действует его вес, однако теперь весу не противостоит натяжение веревки. Если мы предполагаем, что вес тела остается постоянным во время его падения, можно считать, что эта постоянная сила «создаст» постоянное ускорение свободного падения. Тележка скатывается по наклонной плоскости с ускорением, составляющим долю g; сила, тянущая тележку вниз по наклонной плоскости, составляет лишь долю веса тележки. Позднее вы узнаете, чему равна эта доля; она зависит от наклона плоскости. Зная эту долю веса, можно было бы, следуя Галилею, сопоставить силу, направленную вдоль наклонной плоскости, и ускорение движения вниз по наклонной плоскости. Какое соотношение должно предположительно существовать между силой и ускорением?. Первые экспериментаторы, такие, как Галилей, смогли найти соотношение, изучая падающие и скатывающиеся по наклонной плоскости тела.

Мы его вскоре рассмотрим. Оно играет очень важную роль в физике и технике, и этому основному соотношению подчиняется движение звезд и поведение атомов.

Нам еще предстоит рассмотреть вопрос о силе и ускорении.

В заключение выскажем некоторые сомнения. Откуда вам известен вес тела, когда тело свободно падает? Когда вы сидите на стуле, вы ощущаете поддерживающую силу со стороны стула и вам кажется, что вы чувствуете свой собственный вес. Но выпрыгнув из окна, почувствуете ли вы свой вес? Предположим, вы прыгаете из окна, а в руках держите кусок металла, причем пытаетесь взвесить его в момент падения. Предположим на минуту, что, дабы сделать вашу временную лабораторию более удобной, вас вместе о куском металла и приспособлением для взвешивания заключили в огромный ящик и сбросили этот ящик с большой высоты, предоставив ему свободно падать. Предположим далее, что в ящике нет окон. Что произойдет с куском свинца, когда вы выпустите его из рук, находясь внутри ящика? Будет ли он падать на пол? Поразмыслив, вы придете к выводу, что земное притяжение как бы исчезнет. Скажете ли вы, что тяжесть действительно исчезла или что ваша лаборатория движется вниз с ускорением? Если нельзя сказать, в чем разница, то существует ли вообще разница? Обсуждение этих вопросов привело бы вас к теории относительности.


ПРИЛОЖЕНИЕ I. АЛГЕБРА

В этом приложении мы не собираемся открывать новых законов физики или пересматривать старые, мы намерены лишь произвести своего рода механическую обработку понятий. Начнем с предположения, которое представляется ясным для понимания, а именно с предположения о движении с постоянным ускорением, и заставим алгебру дать нам некоторые логические следствия. Полученные результаты — это просто старые сведения, которым придана новая форма. Они будут полезны при изучении реального мира — при выводе этих результатов мы можем спокойно сидеть в башне из слоновой кости и верить в то, что наши действия — действия совершенной логики — верны с точностью до предположений, на которых они Определение. Выберем в качестве величины, с которой мы будем иметь дело, изменение скорости в единицу времени:


Определение. Выберем в качестве величины, с которой мы будем иметь дело, изменение скорости в единицу времени:

[ИЗМЕНЕНИЕ СКОРОСТИ]/[ВРЕМЯ ИЗМЕНЕНИЯ СКОРОСТИ], ИЛИ Δv/Δt

Поскольку эта величина — понятие, удобное для пользования, мы назовем ее ускорением. Тогда формулировка «ускорение = Δv/Δt» представляет собой лишь словарное определение, объясняющее, чему мы дали это название.


Предположение. Мы предполагаем, что ускорение постоянно. (Иначе говоря, мы исследуем вид движения, при котором величина Δv/Δt постоянна. Существует много других типов движения, общих по своему характеру, но этот тип движения — простой и в то же время очень важный, поэтому мы исследуем его подробно.)

Итак, Δv/Δt — постоянная, величину которой мы обозначим через a.

Пользуясь нашим методом, основанным на элементарной алгебре, мы будем предполагать, что средняя скорость тела, движущегося с постоянным ускорением, в точности равна среднему из скоростей в начале и в конце перемещения. Таким образом, мы предполагаем, что

СРЕДНЯЯ СКОРОСТЬ = (НАЧАЛЬНАЯ СКОРОСТЬ + КОНЕЧНАЯ СКОРОСТЬ)/2

Мы говорим также, что

ПРОЙДЕННЫЙ ПУТЬ = СРЕДНЯЯ СКОРОСТЬ∙ВРЕМЯ,

или

s = v/t

Заметим, что мы пользуемся точкой в качестве знака умножения; сейчас так принято, и мы будем прибегать к этому знаку для перемножения таких единиц, скажем, как чел∙час; кроме того, мы поставили сверху черту над буквой v для обозначения «v среднее».

Терминология. Примем следующие обозначения:

1) Ускорение — а м/сек на секунду.

2) Скорость движущегося тела в момент пуска часов (т. е. при t = 0) равна vм/сек. Сокращенно записываем это в виде

Начальная скорость = vм/сек при t = 0.

3) Скорость движущегося тела по прошествии t сек равна v м/сек, или

Конечная скорость = v м/сек.

4) Путь, пройденный за время t сек, равен s м.

Как уже было сказано, это лишь расшифровка принятых буквенных обозначений. Мы можем дать более связную формулировку: движущееся тело, начав двигаться со скоростью v, проходит расстояние s за время t с ускорением а и достигает конечной скорости v.

19