б) Представьте, что самолет сбрасывает вдвое более тяжелую бомбу. Какова будет ее траектория по сравнению с первой бомбой, если сопротивлением опять-таки можно пренебречь?
в) Представьте, что самолет сбрасывает деревянную бомбу W, на движении которой заметно сказывается сопротивление воздуха. Начертите вероятную траекторию бомбы W, сделав необходимые разумные предположения; отметьте несколько положений W и A.
Задача 2
Представьте себе, что самолет в задаче 1 летит не горизонтально, а по наклонной прямой (фиг. 33), неизменно набирая высоту с постоянной скоростью.
Фиг. 33. К задаче 2.
а) Каково будет в этом случае движение бомбы в самом начале, когда она отделяется от самолета?
б) Забыв на некоторое время о самолете, опишите словами и начертите траекторию любого летящего массивного снаряда, движение которого начинается таким образом. (Если вы не уверены в своих предположениях, проведите необходимый опыт.)
в) Начертите график, изобразив несколько положений бомбы В. Покажите соответствующие положения самолета А. (Указание. Поскольку самолет летит с постоянной скоростью, он обладает постоянной горизонтальной составляющей скорости. Бомба…)
Задача 3
Если вам удалось решить задачу 2, то вы должны были сделать дополнительное предположение относительно вертикальной составляющей полета снаряда, которое не требовалось в задаче 1. Что это за предположение?
Вы можете убедиться в том, как «правила», выведенные из эксперимента, могут быть использованы в практических целях.
В средние века эти правила Галилея могли быть полезны в артиллерийском деле. В наше время они служат отправной точкой для современной баллистики, в которой детально учитываются такие эффекты, как сопротивление воздуха, движение Земли и даже переменная величина силы земного тяготения.
Галилей проделал воображаемые опыты на борту корабля, чтобы показать, что движение можно разложить на составляющие и что равномерное движение «лаборатории» можно не принимать во внимание. Предлагаемая ниже задача объясняет некоторые свойства относительного движения.
Задача 4 (трудная, но важная). Начало принципа относительности Галилея. Пассажир, находящийся в вагоне поезда, роняет апельсин. Апельсин падает ему на ноги. В рассуждениях, которые следуют ниже, сопротивлением воздуха можно пренебречь.
1) Представьте себе, что вагон неподвижен. Какова в атом случае траектория движения апельсина?
2) Представьте себе, что вагон движется вперед с постоянной скоростью, скажем 20 км/час. В этом случае, до того как апельсин выпал из рук, он, двигался вместе с пассажиром и вагоном с постоянной скоростью 20 км/час, направленной вперед. Таким образом, когда апельсин был выпущен из рук, он начал движение вперед со скоростью 20 км/час и стал падать.
а) Что произойдет с движением апельсина вниз с течением времени?
б) Что произойдет с движением апельсина вперед с течением времени?
в) Представьте себе, что неподвижный наблюдатель, стоящий у полотна железной дороги, смотрит в окно. Начертите траекторию апельсина, какой ее видит этот наблюдатель. Отметьте три или четыре положения падающего апельсина О, О…; отметьте соответствующие положения ног пассажира, F, F…
г) Начертите траекторию, наблюдаемую пассажиром в вагоне, отметив несколько этапов.
д) Представьте себе, что шторы в окне опущены и пассажир не может видеть того, что за окном. Считайте, что поезд движется плавно, без толчков.
Может ли пассажир на основании опытов с апельсином внутри вагона решить, что вагон движется? Если да, то какие наблюдения позволили бы ему сделать этот вывод? Если нет, то насколько реально движение вагона?
Есть ли какая-нибудь разница для пассажира (поскольку это касается экспериментов с бросанием апельсина), движется ли вагон вперед или же вся местность, лежащая за пределами вагона, движется назад? (С подобных вопросов начинается рассмотрение принципа относительности — сначала относительности медленного равномерного движения, о которой знал Галилей и которая является содержанием этой задачи, а потом относительности, которую рассматривал Эйнштейн. Следуя Эйнштейну, современные физики считают, что если эксперимент не в состоянии дать ответа на какой-то вопрос, то сам вопрос поставлен неправильно и представляет собой бессмысленную попытку доискиваться знания там, где это невозможно.)
На самом деле летящее тело не совершает отдельно горизонтального и вертикального движения. Когда тело движется по криволинейной траектории, направление его движения в любой момент совпадает с направлением касательной. Поднимаясь от А к В и С (фиг. 34), тело движется все медленнее и медленнее, а затем, падая от С до D и Е, движется все быстрее и быстрее; скорость тела при этом изменяется, поскольку изменяется под действием «земного тяготения» вертикальная составляющая.
Фиг. 34. Движение летящего тела.
Задача 5
Как видно из фиг. 26 (стр. 83), шарик за время каждой короткой вспышки оставляет небольшую метку.