Физика для любознательных. Том 1. Материя. Движени - Страница 31


К оглавлению

31

а) Какую информацию можно извлечь, анализируя длины меток?

б) Какую информацию можно извлечь, анализируя направление меток?

в) Как можно по самим меткам (а не по расстоянию между ними) определить, происходит ли горизонтальное движение с постоянной скоростью?

г) Как можно по самим меткам сделать вывод относительно вертикального ускорения?

д) Верхняя метка выглядит почти как точка. Какой вид она должна иметь — точки или черточки? Почему?

е) Какое видоизменение опыта вы бы предложили, чтобы доказать ваш ответ на вопрос (д)?

ж) При фотографировании шарик не был просто брошен один раз и сфотографирован; пришлось сделать много фотографий и выбрать из них одну. Как по-вашему, по какой причине это пришлось сделать (возможную недостаточную квалификацию фотографа во внимание не принимать)?


Разложение движения по действительной траектории на горизонтальное и вертикальное (т. е. на компоненты) представляет собой искусственный прием, который принимается без доказательств. Каким правилам подчиняется разложение на компоненты, а также обратный процесс сложения компонент? Процесс сложения отдельных движений в одно движение, которое мы называем результирующим, имеет важное значение в навигации, где приходится складывать движения корабля и океанских течений или движения самолета и ветра. В следующем разделе мы займемся изучением такого сложения движений.


Геометрическое сложение

Наблюдая за полетом камня в воздухе по криволинейной траектории, никто не стал бы подразделять его на вертикальное и неизменное горизонтальное движения, а мы, как ученые, намерены проделать это разделение или анализ и обнаружить, что оба эти движения различного типа и не зависят одно от другого. Тут сразу же возникает ряд вопросов:

а) Каким образом разлагается на две составляющие, или компоненты, одно движение по наклонной прямой?

б) Каким образом два отдельных движения складываются в одно движение?

Мы можем угадать ответ на второй вопрос и использовать его, чтобы ответить на первый. Если попытаться сложить два или несколько движений, то нам придется следить за передвижением в различных направлениях. Вместо этого пусть движения совершаются в течение некоторого промежутка времени, скажем одного часа, а затем рассмотрим расстояния, пройденные за этот промежуток времени. Тогда задача сложения движений сведется к простой задаче сложения пройденных расстояний или перемещений.

Совпадают ли здесь правила сложения с правилом сложения в арифметике, когда, складывая 2 и 3, мы получаем 5?

Эксперимент вскоре убеждает нас в том, что это правило действует лишь в том случае, если отдельные складываемые перемещения происходят по прямой линии в одном и том же направлении. Тогда перемещение на 4 м в направлении на север и 3 м в направлении на север дают суммарное перемещение в направлении на север, равное 7 м; следовательно, скорость 4 м/сек и скорость 3 м/сек, обе в северном направлении, дают суммарную скорость 7 м/сек в северном направлении; скорость 4 км/час плюс 3 км/час, обе в одном и том же направлении, дают суммарную скорость 7 км/час (фиг. 35).



Фиг. 35. Сложение движений, совершаемых в одном и том же направлении.


Если же направления движения оказываются различными, то простая арифметика бессильна. Если к перемещению на 3 м в северном направлении прибавить перемещение на 4 м в восточном направлении, то мы не получим перемещения на 7 м. Точно так же скорость 4 тем/час в направлении на восток плюс скорость 3 км/час в направлении на север не даст в сумме скорости 7 км/час в каком-либо направлении. Чтобы действовать в соответствии с наблюдаемыми в жизни фактами, мы должны пользоваться другим типом сложения, которое мы называем геометрическим сложением.

Здравый смысл (в данном случае простые сведения, приобретенные при ходьбе пешком, вождении автомашин, плавании на лодке и т, д.) подсказывает, как следует производить геометрическое сложение. Предположим, вы хотите сложить перемещения на 4 м к востоку и на 3 м к северу, чтобы найти одно перемещение, которое привело бы вас из исходной точки в пункт назначения. На первый взгляд это кажется несерьезным, но попробуйте проделать это сами. Станьте лицом к северу, поставив ноги вместе. Затем попытайтесь проделать оба эти перемещения, т. е. 4 шага вправо и 3 шага вперед одновременно. Можно попытаться проделать это, совершая каждое перемещение одной ногой — правой в сторону, а левой одновременно вперед. Однако в результате можно оказаться в довольно неудобном положении (фиг. 36). Лучше проделать сперва одно перемещение, а затем другое, иначе говоря, продвинуться на 4 шага вправо, а затем сделать 3 шага вперед (фиг. 37).



Фиг. 36. Попытка сложить два движения, совершаемых в разных направлениях.



Фиг. 37. Сложение движений.


Можно проделать эти перемещения в другом порядке и прийти в тот же пункт назначения. Если бы вы смогли как-то проделать оба перемещения одновременно, то пришли бы в ту же конечную точку. В самом деле, это можно проделать, если приспособить ковер, который передвигался бы по полу при помощи электромотора.

31