Физика для любознательных. Том 1. Материя. Движени - Страница 32


К оглавлению

32

Тогда, став на ковер (на фиг. 38 показан игрушечный автомобиль на коврике), можно было бы включить мотор, чтобы он протащил ковер на 4 шага вправо, а самому в это время сделать 3 шага вперед. По отношению к ковру вы сделаете только 3 шага вперед. С высоты птичьего полета покажется, что вы проделываете оба перемещения одновременно и приходите в тот же пункт назначения, как если бы вы сперва проделали одно перемещение, а потом другое.



Фиг. 38. Сложение движений.


Какое единственное перемещение могло бы заменить эти два, проделанные одновременно или по отдельности, и привести вас в тот же пункт назначения? Простое перемещение по прямой линии из исходной точки в конечную. Это перемещение называют суммой обоих перемещений. Если начертить перемещения в масштабе на бумаге, как на фиг. 39, то однократным перемещением, которое заменило бы оба перемещения (если бы они были сделаны по отдельности), будет перемещение R.



Фиг. 39. Сложение перемещений, происходящих под прямым углом.


Если перемещения совершаются не под прямым углом, то применимо такое же изображение в масштабе, как показано на фиг. 40.



Фиг. 40. Сложение перемещений.


Если перемещения совершаются одновременно (так бывает, когда полет самолета происходит при наличии ветра) мы можем по-прежнему считать, что сначала происходит одно перемещение, а потом другое, и прийти к результирующему перемещению R (фиг. 41).



Фиг. 41. Сложение перемещений.


Мы находим результирующее перемещение, беря сначала одно перемещение, а затем другое, как показано на фиг. 42, а или б. Объединяя обе эти фигуры (фиг. 42, в), мы видим, что результирующее перемещение дается диагональю параллелограмма, сторонами которого служат первоначальные перемещения.



Фиг. 42. Сложение перемещений.


Это правило для сложения перемещений несомненно верно; в этом нас убеждает здравый смысл, основанный на опыте, приобретенном начиная с раннего детства.

Это правило можно обратить и разложить перемещение R на компоненты А и В. Эти компоненты — одна из возможных пар перемещений, которые вместе дают R. Существует бесконечное множество таких пар, каждая из которых дает в сумме одно и точке перемещение R.



Фиг. 43. Примеры сложения перемещений по правилу параллелограмма.


...

Задача 6

а) На фиг. 44, а изображено перемещение R, разложенное на две компоненты А и В; на фиг. 44, б показано то же самое перемещение R, разложенное на другую пару компонент А и В. Скопируйте эти рисунки и добавьте к ним еще несколько, на каждом из которых было бы изображено то же самое перемещение R, разложенное на другие компоненты: А, В, А, Ви т. д.



Фиг. 44. Вектор R можно разложить на компоненты A и B, A и В или на другие пары компонент. Компоненты вектора R не обязательно должны составлять между собой угол 90°.


...

б) Покажите, что компоненте А можно придать любое направление и любую величину и при этом найти такую компоненту В, которая в сумме с А даст R. (Это равносильно вычитанию векторов R-А, которое находит применение в физике и встретится нам в дальнейшем.)


Скорость

Направление перемещения имеет столь же важное значение, как и величина. В физике скорость связывают с определенным направлением. Скорость обладает обоими качествами: величиной и направлением. Подчиняются ли скорости правилу геометрического сложения? Или, как сказал бы ученый, являются ли скорости «векторами»?


Векторы (определение)

Векторы — это величины, складываемые геометрическим способом. Они называются «векторами» потому, что их можно охарактеризовать, проведя отрезок прямой, показывающий как величину вектора (в некотором масштабе), так и его направление.


Правило сложения двух векторов

Геометрическое сложение описывается следующим правилом. (Согласно определению векторов, оно автоматически применимо к ним.)

Чтобы сложить два вектора, выбирают подходящий масштаб и вычерчивают их в этом масштабе из одной точки, а затем строят на складываемых векторах параллелограмм. Тогда сумма векторов будет изображаться диагональю параллелограмма, соединяющей исходную точку с противолежащей вершиной.

При таком способе сложения сумма нескольких векторов определяется как единственный вектор, который может заменить первоначальные векторы, или производит такой же физический эффект.

Подобно тому как векторы А и В дают при сложении сумму R (фиг. 45), можно сложить векторы А и В и С, прибавив С к R, в результате чего получим вектор R. Прибавляя далее вектор D, получаем Rи т. д. Или, проще говоря, любое количество векторов можно складывать, проводя следующий прибавляемый вектор из конца предыдущего, как показано на фиг. 46 (этот рисунок представляет собой лишь упрощение фиг. 45, б), и их сумма будет изображаться вектором, соединяющим исходную точку с конечной.

32